Table of Contents

- World Leader in Lumber Drying Systems .. 3
- First in Quality and Service .. 3
- We Invite You to Call ... 3
- **Basic Facts on Drying Lumber** .. 4
- Why Dry Lumber ... 4
- How Much Water is in Lumber ... 4
- What is Free and Bound Water ... 4
- Difference Between Drying Hardwoods & Softwoods ... 5
- Does the Wood Stay Dry ... 5
- Can Drying Cause Wood to Split or Check ... 6
- Does the Thickness of Lumber Affect the Drying Rate .. 6
- **Drying Methods** ... 7
- Air Drying .. 7
- Shed Drying .. 7
- Forced Air Drying or Fan/ Shed Drying .. 7
- Pre-Drying .. 7
- Kiln Drying .. 7
- **Types of Kiln Drying** ... 8
- Solar Kiln .. 8
- Conventional Kiln ... 8
- Vacuum Kiln .. 8
- Dehumidification Kiln .. 8
- **Facts on Dehumidification Kilns** .. 10
- Are Dehumidification Kilns More Expensive to Run .. 10
- Which Kiln is Faster ... 10
- What is the Nyle XDH System ... 10
- How Important is Airflow ... 10
- Should Fans Reverse ... 11
- What Type of Heating System to Use for Warm-Up ... 11
- Can Pitch be Set in Pine ... 11
- What is Conditioning ... 11
- **Selecting a Kiln** ... 12
- What Size System do I Need ... 12
- Where Should the Drying Unit Be ... 12
- How Do I Design the Kiln Chamber .. 12
- Capacity Chart ... 13
- How Profitable are Nyle Machines .. 14
- NSC 100 Control Systems .. 15
- L-Series Units & Accessories .. 16
- HT-Series Units .. 20
- VHT Series Units ... 23
- Pallet Heat Treating ... 24
- Firewood Heat Treating ... 25
- Container Kilns .. 26
- Conventional Kilns ... 27
- Indirect Fired Heaters ... 28
- Atomizing Spray System .. 30
- Notes .. 31
Since 1977, Nyle has been building the world’s most energy efficient lumber dryers. We pioneered the development of dehumidification drying as a practical, economical drying method. Today our systems set the standard for performance and efficiency around the world.

Nyle drying systems are easy to install and use, yet they give you the power, precision control and outstanding reliability you need for optimum drying performance in almost any drying application. Our patented XDH system, a breakthrough in dehumidification drying, constantly monitors and regulates the airflow within the dehumidifier. It enables Nyle XDH Systems to work over a wider temperature range and with greater energy efficiency than any other system in the world. Compared to conventional kilns, which waste energy by venting heated air, our total recovery dehumidification systems use 60% to 80% less energy, and give you much lower operating costs.

With Nyle, you get the kind of horsepower other companies don’t offer. We give you up to three times more horsepower per dollar than some of our competition. We give you year-in, year-out reliability. Our units offer extra quality features like corrosion resistant aluminum cabinets, and dehumidification coils that are coated with a special coating. Nyle larger units have stainless steel evaporator coils and tubing as well as many other features that make your system last longer and perform better. You get more than just great systems with Nyle. You also get the best support in the industry. When you call us, you can talk with the people who actually build your system. As the largest manufacturer of dehumidification drying systems in the U.S., we have the know-how to answer your questions and give you the expert advice you need. If you’re not sure what size drying system you need or how to best design and build your kiln chamber, we won’t give you a selling pitch: we’ll give you a realistic analysis of the numbers, and a straight answer on what type of system will work best for you.

To answer some of your questions on lumber drying, we’ve prepared this booklet. It takes a look at things like the drying process itself, the different kinds of systems available, and the way dehumidification drying works. Call us with your questions. Let us show you why Nyle is the world’s number one choice for economical, optimum performance drying systems.
Fresh cut lumber contains a great deal of water. If the water is not removed, the lumber can’t be used to produce a high quality finished product. Properly dried lumber sells for a higher price and is much easier to work with than lumber that hasn’t been dried. When lumber is dried right, it machines better, glues better, and finishes better. Drying also improves the strength of the lumber, kills infestations, hardens pitch, preserves color, reduces weight and controls shrinkage. Lumber that is not dried under controlled conditions is prone to warping, staining, and other degradation that diminishes its selling price and workability. With a Nyle dehumidification kiln, successful lumber drying for better profitability is easy and affordable for virtually any size operation.

When trees are growing there is liquid water moving through the cells of the wood. This water is called free water because it exists in water form and can be removed relatively easily from the wood. Bound water is water that becomes part of the wood fiber itself, and is more difficult to remove.

Some species of wood are more than half water in terms of their weight when they’re fresh cut. Moisture content in lumber is generally expressed as a percentage of the dry weight. For example, if a fresh cut board weighs five pounds per board foot, then weighs 3 pounds per board foot after it’s been dried in an oven to 0% moisture content, that means it had two pounds of water in every board foot. Two pounds of water per board foot compared to the lumber’s dry weight of three pounds per board foot is a ratio of 2:3 so the lumber has a moisture content of 2/3, or 67%. That’s similar to oak, for example, which is usually about 68% moisture content when fresh cut.

It’s really astounding how much water has to be removed from wood to make it suitable for finished products. Take the example of a truckload of oak. Fresh cut oak weighs about 5.4 pounds per board foot. So a truckload of 8,000 board feet weighs about 43,560 pounds—just under 22 tons. Once you remove enough water to get the oak down to a moisture content of 6%-8%, it weighs about 3.5 pounds per board foot. So that truckload now weighs 28,000 pounds, or about 14 tons. That means that to completely dry a truckload of 8,000 board feet of oak, you have to remove 15,560 pounds of water—almost eight tons! That’s why choosing the right drying system and using the proper method are so important.

When wood is dried, the first thing that happens is that the free water evaporates until the lumber drops to what’s called Fiber Saturation. Fiber saturation is generally reached when the moisture content gets to about 28%. At that point, all the free water is gone and only bound water remains. Wood does not shrink until it is below fiber saturation and the bound water begins to be removed from the cells of the wood.
This is a commonly asked question, but the actual species of the wood is really more important to consider than just whether it's a hardwood or a softwood. The terms hardwood and softwood generally refer to whether the wood comes from a tree with leaves (hardwood) or a tree with needles (softwood). Some hardwoods are actually softer than many softwoods, so there's no general drying method that applies as a rule to all hardwoods or all softwoods.

Different species require drying at different temperatures and different speeds to produce the best results. Oak has to be dried slowly or it degrades badly. Pine needs to be dried at a fast rate or it stains and molds. That doesn't mean all hardwoods should be dried as slowly as oak, or that all softwoods can be dried as quickly as pine. There's a proper method that's been determined for nearly every species of lumber to produce the best results. Check with your Nyle representative for information on drying a particular species.

Wood is always trying to come into equilibrium with the air surrounding it, so its moisture content can change somewhat after it's been dried. In dry air, the wood gives up water to the air until it is dried, as it equalizes with the air. When the air is more humid, wood absorbs water from the air. Wood expands when it absorbs water, and shrinks when it gives up water.

In worst-case winter heated conditions in northern climates, wood may dry to a moisture content of 6% as it gives up water to the dry air. In the humidity of summers, it may pick up moisture to about 15-16%. If dried lumber is exposed to outdoor conditions long enough, it will eventually reach about 12% moisture content, which corresponds to the average annual equilibrium point in most geographic areas.
Wood does shrink as it dries, but the shrinkage doesn’t start until the lumber is below fiber saturation, about 28% moisture content. If the outside surface is below 28% while the center of the board is still above fiber saturation, the outside will try to shrink while the center doesn’t—and if this continues until the surface becomes too dry in relation to the core, the lumber will split or check.

Controlled drying in a kiln, especially when drying from the green state, reduces or eliminates splitting and checking. When lumber is air dried, however, there is no control over the drying process, and the weather can easily cause splitting and checking that results in losses.

Can Drying Cause the Wood to Split or Check?

Yes. The lumber industry generally refers to lumber thickness in terms of quarter-inch multiples. Therefore, one-inch thick lumber is referred to as 4/4, one and one-half inch lumber is 6/4, etc. Generally speaking, drying times are roughly proportional to the thickness. That is, 8/4 lumber usually takes a little more than twice as long to dry as 4/4.

Does the Thickness of Lumber Affect the Drying Rate?
Drying Methods

Air Drying

Air drying refers to drying that takes place using the natural wind and sun. Lumber is stacked on stickers and placed in a manner that allows the prevailing winds to blow through the pile and dry it. The drying is strictly dependent upon the weather, which can dry lumber too fast and cause checks and damage, or dry it too slowly, which is expensive. For lumber that is to be used in furniture or some other finished product which requires a 6–8% moisture content, air drying by itself can't do the whole job. It's often used as a first step, with the lumber being placed in a kiln for final drying. Air drying poses real problems with damage and degrade. And it's often the most expensive way to dry once you include interest on the money tied up, labor, land costs, and especially degrade loss.

Pre-drying

Pre-drying is used to remove most of the free water from lumber before it is placed in a kiln for final drying. In a predryer, lumber is stacked in a building where heat and humidity are controlled. The temperature is usually kept around 90-100°F (35°C). The lumber is dried to 20-30% moisture content, and then placed in a kiln for final drying. Though predryers cost about the same to build as kilns when you compare costs on the basis of your annual production, they require extra handling of the lumber, and they actually cost more to run than dry kilns. They are usually only used in combination with dry kilns that are old or inefficient and cannot be used to dry green lumber.

Shed Drying

Rain and direct sun can severely damage wood while air drying. Instead of air drying lumber, some people put lumber under a roof or shed to protect it from the elements. This enhances quality somewhat over air drying, but it extends the drying time. It also requires an investment in sheds—and it still doesn't allow much control over factors like humidity, air flow, and temperatures.

Forced Air Drying or Fan/Shed Drying

This is shed drying as described above, except fans are used to force air through the lumber rather than relying upon the natural wind. This is faster than air drying or shed drying, but the cost of operating the fans is quite high. Also, the capital investment is fairly high in proportion to the amount of drying that can be accomplished.

Kiln Drying

In kiln drying, lumber is placed in a chamber where airflow, temperature, and humidity are controlled to provide as rapid drying as can be tolerated by the lumber without increasing defects. There are several types of kilns. The different types are defined by the manner in which the temperature and humidity are controlled. The three most common types of kilns are Conventional, Dehumidification, and Solar.
There are several types of solar kilns, but they all generally rely on some type of solar collector to provide the heat energy that evaporates the water in the lumber. Unlike solar heating for an office or home, in lumber drying it's not possible to reduce the heat requirement to the point where solar heating can be competitive. When you've got a certain amount of water to remove from a certain amount of wood, you need a certain amount of total heat to do it, and that heat requirement can't be changed.

Drying times in a solar kiln are dependent upon the weather, and thus unpredictable. In hot climates they can degrade lumber due to excessive drying. In colder climates they are unreliable and slow. Solar kilns often use electric–powered fans to circulate air through the lumber, but the cost of running these fans is high—and because of the long drying times, you've got to run the fans for a long time, making solar drying quite expensive. The electricity for running the fans in a solar kiln is usually more than would be used running a DH kiln, as the drying time is longer.

A conventional kiln uses heat provided by either steam or hot water coils or a furnace to heat the kiln chamber and remove water from the wood. The water removed from the wood is turned into water vapor by evaporation, and then exhausted from the kiln with the heated air. This process takes a great deal of heat and requires constant heating of air, so these systems are not as energy efficient as dehumidification kilns. To remove one pound of water from the lumber, a conventional kiln has to draw in about 400 cubic feet (or 12 cubic meters) of air, heat the air, and then exhaust it with the evaporated water. Between heating these large quantities of air and heating the water to evaporate it, conventional kilns have a very high heat requirement. They can provide a very good quality of lumber if a good method of kiln control is provided, but their energy consumption is much higher than that of a dehumidification kiln.

A dehumidification kiln uses a heat pump system to remove the water from lumber. One primary advantage of this type of system is that it recycles heat continuously instead of venting away heated air, as a conventional kiln does. So it is more energy efficient and its operating cost is usually lower. This is true even though a dehumidification kiln uses electric energy to run the fans, the blower that draws the air over the dehumidification coil, and the refrigeration compressor; while a conventional system burns less expensive fuel such as gas or wood. The reason a dehumidification system costs less to run even though a conventional system burns cheaper fuel lies in the dehumidification system's ability to conserve energy by recycling heat. With the heat being constantly recycled, the amount of electricity demanded by the system is small, so it comes out
ahead of a conventional system that may use cheaper fuel, but needs a lot more of that fuel to do the same job.

In a dehumidification kiln, heated air, (usually starting at a heat of about 85°F or 29°C) is circulated over the lumber with separate circulating fans, evaporating the water contained in the wood. The hot, moist air then passes over a cold refrigeration coil where air is cooled to about 60°F (15°C). At the cooling coil, the evaporated water in the air condenses into liquid form and flows down the drain as a stream of cool water—instead of as a cloud of steam carried by heated air, as in a conventional kiln.

When the air is cooled at the cold coil, the heat removed from the air is immediately used by the system to heat the air back up again. The energy efficiency of the heat return is such that each time this process occurs, the air leaves the dehumidifier at an even hotter temperature than when it entered. As the air temperature in the kiln rises, it can ultimately reach temperatures as high as 160°F (72°C), or even as high as 240°F in Nyle’s new VHT system. If the temperature becomes higher than desired, the operator can vent surplus heat to the outside.

Dehumidification kilns are very easy to operate and are very popular with beginning lumber dryers. They are also popular with experienced operators who want a system that requires minimum attention to get zero defect drying. Dehumidification is usually the least expensive to run and to install by a wide margin. Drying times with a Nyle XDH kiln are about the same as conventional kilns.
Facts on Dehumidification Kilns

Are Dehumidification Kilns More Expensive to Run?

They are actually a good deal less expensive. First, a dehumidification kiln is much more energy efficient, so that reduces operating costs dramatically compared to a conventional kiln. Additionally, with a conventional kiln you have to amortize the higher cost of the boiler, you have to pay additional taxes and insurance, and you have higher handling and labor costs for your operation. When you add it all up, dehumidification kilns are usually much more economical.

To make your own detailed cost comparisons, give us a call. We will help you do a complete operating cost analysis based on your local electric rates and other fuel costs.

Which Kiln is Faster?

For hardwoods, and high-grade softwoods, a properly sized dehumidifier will dry as fast as a conventional kiln. If you have a low temperature dehumidifier that has a maximum drying temperature of 120°F, the drying time will be the same going from green down to 30% moisture content. From 30% MC down, the temperature makes a difference, with a 120°F (50°C) kiln taking about 2½ times longer for this part of the cycle. Refer to the chart on page 13 for typical drying times. With Nyle’s development of the VHT Series, a dehumidification system that runs at temperatures as high as 240°F (115°C), Nyle can match nearly any conventional kiln drying time.

What is the Nyle XDH System?

The Nyle XDH System is a unique self regulating feature patented by Nyle. It increases the operating efficiency of the system and allows the dehumidification system to operate to temperatures as high as 160°F (72°C). No other dehumidification system sold in North America has this feature, or can operate over the wide temperature range that Nyle XDH systems handle. The XDH system constantly monitors the air temperature leaving the cooling coil and modulates the airflow over the coil to maximize the system’s water removal. That makes the dehumidification cycle operate at optimum efficiency, and it minimizes electricity use. The modulating function also carefully controls the temperature of the refrigerant returning to the compressor, preventing overloading or overheating and prolonging the life of the refrigeration system. The XDH System is provided as standard equipment on all Nyle systems of 3 hp and larger.

How Important is Airflow?

The airflow in the kiln chamber is very important. The velocity of the air over the wood affects the drying rate and provides even drying. You should discuss air velocity with your kiln manufacturer to be sure that the air velocity in the kiln will be adequate for the species and thickness of the lumber you are drying and the type of kiln you are using. Generally, wetter lumber requires a higher velocity of air through the lumber. If the air is only blowing through 4 or 8 feet of lumber, the airflow requirements are less.
Should the Fans Reverse?

Fans usually reverse in larger kilns. This prevents uneven drying by forcing the air to enter the lumber pile first from one direction and then from the other. It also corrects for dead air spots which may result from the way the lumber is stacked. Generally, lumber that is stacked over 12 feet (3.5 meters) deep in the direction of airflow should have reversing fans. If the lumber stack is less than 12 feet thick, reversing the fans will not make any significant difference in the drying.

What Type of Heating System to Use for Warm-up?

It is only necessary to heat the kiln to about 85°F (29°C) to start the dehumidification process. Once started, the process feeds itself by recycling the heat recovered from the air. Initial warm-up can be done with nearly any type of heating system. Usually, small kilns or single kiln chambers use electric heat, because the additional money required for a more traditional type of heating system doesn’t make economic sense when the heat is only used for a few hours a month. When larger kilns are used or more chambers are added, it may make sense to install a gas, oil or wood boiler to provide heat through steam coils. This is an economic decision based upon local energy costs, weather, type of lumber being dried, etc. Nyle can provide operating cost estimates to help with this decision. However, in most cases, electric heat provides the most economic choice for initial warm-up.

What is Conditioning?

Conditioning is adding moisture back to the surface of the lumber to relieve any stress that occurs in the outer surface, which dries and shrinks faster than the interior. Stress can also occur because of how the lumber is sawn or where the tree grew. A tree that grows on the side of a hill or mountain may have stresses from that.

If proper drying schedules are not used, the outer surface of the lumber will dry much faster, and the surface will tend to shrink more than the interior. This stress remains after the lumber is dried, and if it is not relieved it can cause the wood to deform, especially when it is being worked. Nyle recommends people do a stress test at the end of a load to know the status of the lumber.

Can Pitch be Set in Pine?

When softwoods are dried, pitch sets at the final temperature of the drying cycle. For example, if the last step of drying is 120°F (approx. 50°C), then the lumber has to be get above that temperature again before the pitch starts to run. Some high-speed sanding equipment used by major furniture manufacturers heats the wood to 160°F, so these manufacturers require pitch set to that temperature to avoid wasting sanding belts. If the pitch must be set, it can be done by heating the lumber at the end of the drying cycle to the necessary temperature. This can be done even if the dehumidifier is not rated to operate at that temperature, because during pitch setting you are not removing water with the dehumidifier, you’re just applying heat.

Air-dried lumber tends to have less stress at the end of drying because of variations in the weather. Air drying offers little control over drying rates, so damage can occur easily in some hardwoods.

If the lumber isn’t used immediately out of the kiln, it will condition itself naturally with time. Not all species are prone to stress, and the final use of the lumber may not require stress relief. For example, if the lumber is going to be planned on 4 sides, the stressed wood will be lost.
The first step is to project how much lumber you’ll dry in a year. Then figure your average drying time for each of the species you’ll be drying, and you can calculate the size kiln you need from there.

For example, a requirement to dry 500,000 board feet of oak per year: Fresh off the saw oak takes about 28-30 days to dry, so you’ll be able to do 12 loads in a year. Each load will need to be 42,000 board feet to give you the 500,000 board feet you need for the year. That means you could build a single 40-45,000 board foot chamber or two 20-25,000 board foot kilns. For more specific information, see the Capacity Chart on page 17.

It is not a good idea to mix species, thicknesses, or moisture contents of lumber in one kiln, as all the wood will have to be dried based on the schedule of the slowest drying species and thickness. All the lumber in the kiln will dry at the same rate, and the moisture content will equalize in the load. Therefore, if you’re going to be drying several species and thicknesses of lumber during the year, it’s better to use smaller chambers rather than one large one, so you can keep each species and thickness in its own kiln. If you are drying air dried lumber, and it is all below 25% moisture content, you can mix species without trouble.

It generally does not cost much more to have two smaller kilns rather than one large one, and the benefits of flexibility, loading times, and control of the drying processes will favor multiple smaller chambers over a single large one. If you are only drying one species and thickness of lumber in a month, a single kiln would be appropriate. Please contact Nyle to talk about different sizing options.

Generally, the most efficient configuration is to have the blower coil cabinet inside the kiln chamber, with the compressor, controls, and electronics in the control room. This offers the best environment for the machinery while reducing installation and operating costs. Small systems that operate at lower temperatures often have the compressor inside the kiln chamber. Nyle can custom design a system based on your specific requirements.

The chamber for a dehumidification kiln can be built from wood, concrete block, steel, aluminum, or almost any combination of these materials. It is important that the chamber be tight and insulated to about R–30. Almost all kilns under 25,000 board feet (60m³) are wood frame chambers. A wood frame is fairly easy to insulate properly, and is basically built like a well insulated garage. At Nyle, we provide you with technical drawings and expert advice on kiln chamber construction.

Generally, the first step is to determine the proper stack of lumber for the operator’s needs. Then the chamber is designed around that stack. A tight, well insulated chamber serves two important purposes: it allows the recovery of as much heat as possible to provide low drying costs; and it prevents damage to the lumber that can result from loss of control of temperature and humidity when there are air leaks and poor insulation. Proper insulation is just as critical in hot climates as it is in cold climates.

Nyle can help with the design of your kiln, or provide a complete turnkey system, building and all, or give you any degree of assistance in between. We’re the experts in lumber drying, and we are ready to give you experienced advice not only in the design of your kiln structure, but in the layout of your yard and operating as well. Some manufacturers provide complete kiln chambers.
This chart can be used to compare drying times, annual production, and electric cost for drying a load. Remember, a Nyle kiln is an investment, and should be looked at as such. The return on the investment has to take into account the variances in lumber pricing, the cost of the kiln chamber, and the amount of lumber dried during a year. This chart will prove close to what you will see in a majority of applications.

Different types of wood are dried at different rates; we have grouped similar drying woods in this chart to reflect that. As some woods, such as softwoods, need to be dried fast in order to avoid mold and stain, while some hardwoods, such as Oak have to be dried slowly to avoid checks and honeycomb.

<table>
<thead>
<tr>
<th>Model</th>
<th>Wood Group</th>
<th>Load Size BF</th>
<th>Annual Production BF</th>
<th>Drying Days</th>
<th>Drying Cost Per MBF</th>
<th>Annual Production BF</th>
<th>Drying Days</th>
<th>Drying Cost Per MBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>L200</td>
<td>1</td>
<td>1,500</td>
<td>43,000</td>
<td>12</td>
<td>$44.27</td>
<td>180,000</td>
<td>3</td>
<td>$11.56</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3,000</td>
<td>48,000</td>
<td>22</td>
<td>$41.27</td>
<td>135,000</td>
<td>8</td>
<td>$15.66</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4,000</td>
<td>40,000</td>
<td>35</td>
<td>$44.31</td>
<td>88,000</td>
<td>16</td>
<td>$19.23</td>
</tr>
<tr>
<td>HT4</td>
<td>1</td>
<td>2,000</td>
<td>80,000</td>
<td>9</td>
<td>$44.18</td>
<td>208,000</td>
<td>3</td>
<td>$13.18</td>
</tr>
<tr>
<td>(L300)</td>
<td>2</td>
<td>6,000</td>
<td>114,000</td>
<td>19</td>
<td>$32.92</td>
<td>198,000</td>
<td>11</td>
<td>$18.29</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8,000</td>
<td>96,000</td>
<td>30</td>
<td>$38.58</td>
<td>192,000</td>
<td>15</td>
<td>$19.61</td>
</tr>
<tr>
<td>HT8</td>
<td>1</td>
<td>3,000</td>
<td>135,000</td>
<td>8</td>
<td>$43.21</td>
<td>360,000</td>
<td>3</td>
<td>$16.67</td>
</tr>
<tr>
<td>(L500)</td>
<td>2</td>
<td>8,000</td>
<td>320,000</td>
<td>22</td>
<td>$45.24</td>
<td>264,000</td>
<td>8</td>
<td>$17.12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12,000</td>
<td>144,000</td>
<td>30</td>
<td>$46.11</td>
<td>312,000</td>
<td>14</td>
<td>$19.61</td>
</tr>
<tr>
<td>HT18</td>
<td>1</td>
<td>10,000</td>
<td>400,000</td>
<td>9</td>
<td>$41.82</td>
<td>1,200,000</td>
<td>3</td>
<td>$14.73</td>
</tr>
<tr>
<td>(L1200S)</td>
<td>2</td>
<td>20,000</td>
<td>400,000</td>
<td>18</td>
<td>$43.69</td>
<td>1,040,000</td>
<td>7</td>
<td>$16.26</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30,000</td>
<td>360,000</td>
<td>28</td>
<td>$46.94</td>
<td>900,000</td>
<td>12</td>
<td>$19.36</td>
</tr>
</tbody>
</table>

This chart is based on 10¢/kWh electricity, 50°F outside temperature, building sized for the load size listed and as a separate building. This chart assumes electric pre–heat. The drying times are based on drying 4/4 (1", 25mm) lumber. Thicker lumber will take longer to dry, and has to be dried slower.

MBF= 1000 Board Feet (2.36m³)
Consider this example. Assume that Red Oak sells green in the rough for $800.00 / MBF ($0.80/bf) and kiln dried Red Oak sells for $2500.00 ($2.50 bf). The costs to dry are $39.88 MBF (4¢/bf) for electrical costs, and $15.00 (1.5¢ /bf) for handling. With these numbers, your increased profit per board foot is $2.50 - $0.80 - $0.04 - $0.02 = $1.64 per board foot.

We'll also assume the cost to build the chamber is the same as the equipment, and that you will amortize this over seven years. An L200 with chamber could be set up for $12,000.00. The L200 is capable of drying 40,000 board feet of green Oak per year, with one year’s amortization of equipment and chamber at about $1360. With your amortized cost, your potential profit per year is

\[(40,000 \text{ bf/yr} \times 1.64) - 1360 = 64,240.\]

Try this equation with numbers from your own marketplace, and then do the calculations with our competition. Remember to use the annual production at the correct moisture content removal. You’ll find that among equally priced units, Nyle dryers outperform the competition. Why? Because Nyle systems have larger compressors for more capacity, and patented technology for higher efficiency over a broad operating range.

Do the math yourself. It won’t take long to see what company offers the most value and return for your investment.

The L53, the L200 and the L200M are our L series kilns for top performance lumber drying. Nyle also has our larger HT series kiln systems, and our VHT systems for very high temperature drying. Nyle also has specialized systems for drying leather, food, helicopter blades, and many other unique items.

Call us toll free in U.S. or Canada: 800-777-6953
Telephone: 1-207-989-4335 Fax: (888)-638-1519
and visit our website at www.nyle.com
NSC 100 Control System

This control system comes standard on Nyle’s larger scale kilns, giving our products the most advanced control system on the market. The NSC 100 control system is also available as a retrofit control box for any existing kiln, even if it’s not manufactured by Nyle.

This controls system is used primarily for large scale dry kilns with the standard package and pallet heat treating and firewood heat treating with the upgradeable packages.

Standard Package
- Color touch screen
- Built-in data logging
- Schedule control
- Multiple modes of drying
- Remote access via LAN or mobile device

Wireless Control Upgrade
- Industrial network for connecting all of your kilns
- Secure locking cabinet
- Wireless access point
- Printer for printing out trends
- All-in-one solution for kiln operators to increase productivity while operating multiple kilns
- Works with unlimited number of kilns

Heat Treating Upgrade
- 4 additional temperature probes
- Automatic recording during a cycle
- Control set-points and climate during a cycle
- Automatically turn off equipment after cycle
- Works with firewood, pallets and more

EMC Moisture Control Upgrade
- 4 Moisture probes
- Can be used with wood, paper core and more
- Automatic recording during a cycle
- Calculate average moisture content for readings in the chamber
- Works with schedule control in standard package for step-by-step changes.

Nyle NSC 100 Control System

With Nyle’s more than 40 years of experience in the industry, we have created a control system that is transforming how kiln operators interact with their kilns. We set out with two goals in mind; increase productivity and make the controls easy to use.

The NSC 100 control system allows operators to dry their lumber using the drying method of their choice, set an automated schedule and monitor or control the chamber remotely with the use of a smartphone, laptop or other mobile device.
L53

Our smallest unit is big on features!

Quality lumber drying is now affordable and easy to accomplish with Nyle’s new L53. The L53 is a compact, high performance dehumidification system which will dry between 300 and 1000 board feet of lumber. Like all Nyle Dehumidification systems, the L53 is easy on your wood, minimizing degrade, and easy on your bank account, minimizing both purchase price and operating costs. Whether you are a serious hobbyist or an accomplished professional, the L53 delivers superb results load after load.

Quality

Nyle’s L53 unit is built to last. Extra heavy duty coils are coated to prevent them from corrosion, in accordance with Nyle standards which have shown over three decades to offer the longest life. Our two fans provide circulation to assure even drying. The chassis is 100% corrosion resistant aluminum and our remote controller has been proven in thousands of applications.

A quality lumber drying system is easier and more affordable than you might think.

Service

Everything in a Nyle Dehumidification unit can be replaced. This is not a disposable product. We know that people run even our smaller units well into their second decade and we intend they should last. In addition, we offer technical assistance over the phone. The people who build our machines handle service calls so you get straight talk when you need it.

Value

The new L53 debuts at a price hundreds of dollars less than its predecessor, our original L50. And the new L53 comes with two fans instead of one and a separate control unit instead of a built in control, and kiln vents, everything you need to get going except the chamber.
Features and Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
</table>
| **Load Capacity** | For softwoods and fast drying hardwoods (Pine or Poplar) 300 BF
For slow drying hardwoods (Oak) 1000 BF. |
| **Nominal Water Removal** | 60 lbs per 24 hours |
| **Drying Time** | 4/4 Green Pine 80% to 8% in approximately 12 days.
4/4 Green Oak from 65% to 8% in approximately 35 days. |
| **Operating Costs** | Green Pine 80% to 10-12%, app. 350 kWh per 1000 board feet
Green Oak 65% to 6%, app. 450 kWh per 1000 board feet. |
| **Operating Temperature Range** | 70°-120°F (21°-49°C) |
| **Pitch Setting Capabilities** | Auxiliary heater can be used to set the pitch, sterilize the load (kill bugs)
and for preheating. |
| **Compressor Nominal HP** | ½ HP |
| **Internal Blower Motors** | 2 internal fans, 50 watts each, 700 CFM |
| **Auxiliary Heat** | 1,000 watts |
| **Over Temperature Vents** | Two manual vents included |
| **Power Requirements** | 110 V. 60 Hz |
| **Shipping Weight** | 175 pounds |
| **Warranty** | One year on material and workmanship. Contact Nyle for a full copy of the Warranty. |
| **Dimensions (H x L x W)** | 37 ½” x 22” x 14 ½” |

- Softwood Drying Capacity: **300 BF**
- Hardwood Drying Capacity: **1,000 BF**
- Water Removal per Day: **60 Lbs.**
- Voltage Requirements: **110V**

L53 Accessories

- **Powered Vent Kit** - Full automated vent used to vent the chamber when the temperature gets too high.

- **Fan Kit** - Fully automated fan kit, which includes 16” housings 16” fan blade, 1/3 HP motor and motor starter.

- **Heat Booster Package** - Used to set pitch, sterilize and faster heating of larger chambers.
A quality lumber drying system is easier and more affordable than you might think.

If you think high quality lumber drying is too complicated or expensive for your small operation, you’re in for a pleasant surprise. With Nyle’s L200 models, you can dry your own lumber down to 6-8% moisture content for pennies per board foot. Kiln dried lumber typically sells for a third more than green lumber. Nearly all lumber must be kiln dried before use and most customers will simply not buy lumber that has not been kiln dried.

The world leader in lumber drying

- Our heat pump technology maximizes energy efficiency: Using 40% - 60% less energy than conventional kilns
- We use corrosion resistant aluminum cabinets and specially coated dehumidification coils giving our machines an extra long life.
- Our precision control systems
- The famed Nyle customer support

The L200 is a compact, high performance dry-kiln system. It will dry up to 4,000 board feet of 4/4 (1” thick dead green oak right-off-the-saw hardwood) in approximately 4 to 5 weeks. It can dry up to 2,500 board feet of 1” green softwood or fast drying hardwood in approximately 1-2 weeks.

You can set the pitch or sterilize the load with the included auxiliary heater. The L200 has a precise control system that requires just a few minutes of daily monitoring with a thermostat with remote sensor, repeat cycle compressor timer, switches and indicator lights.

The L200 kit includes auxiliary heating, two circulating fans, controls, prewired electric panel, over temperature vents and manual. This kit provides you with everything you need to get going (including building plans) except the building itself. Additional fans and a power vent system are available.

The L200M controller upgrade allows you to set parameters for your drying schedule. Set your desired final moisture content and when the probes read your specified moisture content the system will automatically shut down, assuring that your lumber will not be over dried.

Along with the additional probe measurements the L200M controller allows you to set parameters for your drying schedule. Set your desired final moisture content and when the probes read your specified moisture content the system will automatically shut down, assuring that your lumber will not be over dried.
Features and Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Capacity</td>
<td>For softwoods and fast drying hardwoods (Pine or Poplar) 1,500 - 2,500BF</td>
</tr>
<tr>
<td></td>
<td>For slow drying hardwoods (Oak) 4,000BF</td>
</tr>
<tr>
<td>Nominal Water Removal</td>
<td>250 lbs (114 kg) per 24 hours</td>
</tr>
<tr>
<td>Drying Time</td>
<td>4/4 Green Pine 80% to 8% in approximately 12 days.</td>
</tr>
<tr>
<td></td>
<td>4/4 Green Oak from 65% to 8% in approximately 35 days.</td>
</tr>
<tr>
<td>Operating Costs</td>
<td>Green pine 80% to 10-12%, app. 250 kWh per 1,000 board feet</td>
</tr>
<tr>
<td></td>
<td>Green oak 65% to 6%, app. 450 kWh per 1,000 board feet.</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>70°-120°F (21°-49°C)</td>
</tr>
<tr>
<td>Pitch Setting Capabilities</td>
<td>Auxiliary heater can be used to set the pitch, sterilize the load (kill bugs) and for preheating.</td>
</tr>
<tr>
<td>Compressor Nominal HP</td>
<td>2 HP</td>
</tr>
<tr>
<td>Internal Blower Motors HP</td>
<td>¼ HP / 1000 cfm</td>
</tr>
<tr>
<td>Auxiliary Heat</td>
<td>4,000 watts</td>
</tr>
<tr>
<td>Circulating Fans</td>
<td>Two included: 16” (40 cm) diameter; 1/4 hp; 1,500 cfm *</td>
</tr>
<tr>
<td>Over Temperature Vents</td>
<td>Two manual vents included (power vents optional)</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>220 V. single phase, 50hz. or 60hz. (40 amp)</td>
</tr>
<tr>
<td>Shipping Weight</td>
<td>380 lbs</td>
</tr>
<tr>
<td>Warranty</td>
<td>One year on material and workmanship. Contact Nyle for a full copy of the Warranty.</td>
</tr>
<tr>
<td>Dimensions (H x L x W)</td>
<td>37" x 32½ " x 20 ½"</td>
</tr>
</tbody>
</table>

*Nyle offers a wide variety of fan sizes and construction. Sizes and types can be altered to fit your specific job requirement.

- Softwood Drying Capacity: **1,500 - 2,500 BF**
- Water Removal per Day: **250 Lbs.**
- Hardwood Drying Capacity: **4,000 BF**
- Voltage Requirements: **220V**

L200 Accessories

- **Powered Vent Kit** - Fully automated vent kit used to vent the kiln chamber when the temperature gets too high or to release moisture from inside of the kiln chamber.
- **Heat Booster Package** - Used to set pitch, sterilize and faster heating of larger chambers.
- **Fan Kit** - Fully automated fan kit, which includes 16” housings 16” fan blade, 1/3 HP motor and motor starter.
- **Container Package** - Container package includes: 20 or 40 foot refrigerated shipping container, dehumidifier, control system, fans, heater, vents, track & carts and assembly plans.
Our most popular large size system!

NYLE has focused on constant improvement in this technology to assure years or reliable and efficient operation. Our kilns come with reliability features such as corrosion resistant aluminum cabinets, dehumidification coils that are specially coated to withstand the acids and harsh atmosphere in a kiln, stainless steel cold coils and tubing, and many other features that make your system last longer and perform better are included in a Nyle system.

HT Series Benefits

- Designed for loads of 2,500 to 350,000 BF
- Operates at up to 160°F to matching the speed of most conventional kilns.
- Nyle’s easy to use precision control systems
- Achieves top quality results with short drying times and incredible efficiency.

These units pull almost 20,000 pounds of water daily and are so efficient they dry for pennies per square foot. Our HT Systems make drying simple and allow even inexperienced operators to produce the highest quality lumber and improve yields. All while running the most environmentally green system available. You Just can’t lose with a Nyle HT System!

The World Leader in Lumber Drying

- Our heat pump technology maximizes energy efficiency: Using 40% - 60% less energy than conventional kilns
- We use corrosion resistant aluminum cabinets and specially coated dehumidification coils giving our machines an extra long life.
- Our precision control systems
- The famed Nyle customer support

Nyle’s HT Series

More than thirty years ago, NYLE invented the high temperature dehumidification lumber drying system. Our patented XDH system, a breakthrough in dehumidification drying, constantly monitors and regulates the airflow within the dehumidifier. This for the first time enabled dehumidification kilns to operate at up to 160°F (72°C) and match the drying speeds of most conventional kilns as well as allowing easy pitch setting and sterilization, all this with greater energy efficiency than any other system in the world.

Which Model is Right for You?

HT kilns are made to order. Our expert sales representatives will select a base model and together with you, we will specify fans, dehumidifier and vents to suit your lumber drying needs.

Our systems can even fit your existing chamber or if you need we can build you a new chamber to suit your operation. HT Series kilns are all about customizing. We want to make sure that you have the system that works best for you, now and for years to come.
Nyle offers a wide variety of fan sizes and construction. Sizes and types can be altered to fit your specific job requirement.

Features & Specifications

<table>
<thead>
<tr>
<th>Spec</th>
<th>HT 4 (L300)</th>
<th>HT 8 (L500)</th>
<th>HT 18 (L1200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Capacity</td>
<td>2,500 - 8,000BF</td>
<td>4,000 - 15,000BF</td>
<td>10,000 - 35,000BF</td>
</tr>
<tr>
<td>Nominal Water Removal</td>
<td>420 Lbs. (191 kg) per day</td>
<td>720 Lbs. (327 kg) per day</td>
<td>1800 Lbs. (930 kg) per day</td>
</tr>
<tr>
<td>Drying Time</td>
<td>2,500BF 4/4 green pine 80% to 8% in approx. 8 days.</td>
<td>4,000BF 4/4 green pine 80% to 8% in approx. 12 days</td>
<td>10,000BF 4/4 green pine 80% to 8% in approx. 12 days</td>
</tr>
<tr>
<td></td>
<td>7,000BF 4/4 green oak 68% to 7% in approx. 28 days</td>
<td>12,000BF 4/4 green oak 68% to 7% in approx. 28 days</td>
<td>35,000BF 4/4 green oak 68% to 7% in approx. 28 days</td>
</tr>
<tr>
<td>Operating Costs</td>
<td>Green pine 80% to 10-12%, app. 350 kWh per 1,000 board feet</td>
<td>Green pine 65% to 6%, app. 450 kWh per 1,000 board feet.</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>80°-160°F (26°-71°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch Setting Capabilities</td>
<td>Set at the highest temperature reached while drying or after drying</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auxiliary heater can be used to set the pitch, sterilize the load (kill bugs) and for preheating.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor Nominal HP</td>
<td>3 HP hermetic</td>
<td>5 HP hermetic</td>
<td>15 HP serviceable hermetic</td>
</tr>
<tr>
<td>Internal Blower Motors HP</td>
<td>1 HP</td>
<td>1.5 HP</td>
<td>3HP</td>
</tr>
<tr>
<td>Auxiliary Heat</td>
<td>8 kW</td>
<td>12 kW</td>
<td>48kW</td>
</tr>
<tr>
<td>**Circulating Fans **</td>
<td>Three ½ hp 24” (61cm)</td>
<td>Five ½ hp 24” (61cm)</td>
<td>Four 2 hp 30” (75cm)</td>
</tr>
<tr>
<td>Reversing Fans</td>
<td>Optional</td>
<td>Optional</td>
<td>Standard</td>
</tr>
<tr>
<td>Over Temperature Vents</td>
<td></td>
<td>Two automatic vents included</td>
<td></td>
</tr>
<tr>
<td>Number of Duct Risers</td>
<td>1 at 14”x 14” (35cm x 35cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Power Requirements (Volts/Phase/Hertz)</td>
<td>220/1/50 and 220/1/60</td>
<td>220/1/50 and 220/1/60</td>
<td>220/3/50 and 220/3/60</td>
</tr>
<tr>
<td></td>
<td>380/3/50</td>
<td>380/3/50</td>
<td>460/3/60</td>
</tr>
<tr>
<td></td>
<td>460/3/60</td>
<td>460/3/60</td>
<td>575/3/60</td>
</tr>
<tr>
<td></td>
<td>575/3/60</td>
<td>575/3/60</td>
<td></td>
</tr>
<tr>
<td>Warranty</td>
<td>One year on material and workmanship. Contact Nyle for a full copy of the Warranty.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Systems are available with steam or hot water coils or with no auxiliary heat. Contact Nyle for details.
<table>
<thead>
<tr>
<th>Model</th>
<th>HT35</th>
<th>HT42</th>
<th>HT54</th>
<th>HT70</th>
<th>HT84</th>
<th>HT108</th>
<th>HT126</th>
<th>HT162</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Capacity BF (Pine-Oak)</td>
<td>15,000-50,000</td>
<td>19,000-60,000</td>
<td>24,000-80,000</td>
<td>30,000-100,000</td>
<td>38,000-120,000</td>
<td>49,000-150,000</td>
<td>57,000-180,000</td>
<td>73,000-225,000</td>
</tr>
<tr>
<td>Nominal Water Removal (lbs/day)</td>
<td>3,500</td>
<td>4,200</td>
<td>5,400</td>
<td>7,000</td>
<td>8,400</td>
<td>10,800</td>
<td>12,600</td>
<td>16,200</td>
</tr>
<tr>
<td>Drying Time</td>
<td>4/4 Green Pine 68% to 6% in approximately 5 days.</td>
<td>4/4 Green Oak 68% to 6% in approximately 28 days.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temp Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch Setting Capabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor Nominal HP</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>2x 25</td>
<td>2x 30</td>
<td>2x 40</td>
<td>3x 30</td>
<td>3x 40</td>
</tr>
<tr>
<td>Internal Blower Motors HP</td>
<td>7.5</td>
<td>7.5</td>
<td>10</td>
<td>2x 7.5</td>
<td>2x 7.5</td>
<td>2x 10</td>
<td>2x 10</td>
<td>2x 15</td>
</tr>
<tr>
<td>Auxiliary Heat</td>
<td>96 KW</td>
<td>96 KW</td>
<td>96 KW</td>
<td>96 - 192 KW</td>
<td>96 - 192 KW</td>
<td>96 - 192 KW</td>
<td>144 - 288 KW</td>
<td>144 - 288 KW</td>
</tr>
<tr>
<td>Circulating Fans¹</td>
<td>2x 20" x 20"</td>
<td>2x 20" x 20"</td>
<td>4x 20" x 20"</td>
</tr>
<tr>
<td>Over Temp Vents</td>
<td>2x 20" x 20"</td>
<td>2x 20" x 20"</td>
<td>4x 20" x 20"</td>
</tr>
<tr>
<td>Shipping Weight (lbs)</td>
<td>< 4,500</td>
<td>< 5,500</td>
<td>< 6,500</td>
<td>< 9,000</td>
<td>< 11,000</td>
<td>< 13,000</td>
<td>< 16,500</td>
<td>< 19,500</td>
</tr>
<tr>
<td>Warranty</td>
<td>One year on material and workmanship. Contact Nyle for full copy of the Warranty.</td>
<td>One year on material and workmanship. Contact Nyle for full copy of the Warranty.</td>
<td>One year on material and workmanship. Contact Nyle for full copy of the Warranty.</td>
<td>One year on material and workmanship. Contact Nyle for full copy of the Warranty.</td>
<td>One year on material and workmanship. Contact Nyle for full copy of the Warranty.</td>
<td>One year on material and workmanship. Contact Nyle for full copy of the Warranty.</td>
<td>One year on material and workmanship. Contact Nyle for full copy of the Warranty.</td>
<td>One year on material and workmanship. Contact Nyle for full copy of the Warranty.</td>
</tr>
<tr>
<td>Dimensions</td>
<td>9'6"(W)</td>
<td>9'6"(W)</td>
<td>10'10"(W)</td>
<td>16'(W)</td>
<td>18'(W)</td>
<td>21'(W)</td>
<td>27'(W)</td>
<td>31'(W)</td>
</tr>
<tr>
<td></td>
<td>6'4"(D)</td>
<td>6'4"(D)</td>
<td>6'4"(D)</td>
<td>6'4"(D)</td>
<td>6'4"(D)</td>
<td>6'4"(D)</td>
<td>6'4"(D)</td>
<td>6'4"(D)</td>
</tr>
<tr>
<td></td>
<td>6'6"(H)</td>
<td>6'6"(H)</td>
<td>6'6"(H)</td>
<td>6'6"(H)</td>
<td>6'6"(H)</td>
<td>6'6"(H)</td>
<td>6'6"(H)</td>
<td>6'6"(H)</td>
</tr>
</tbody>
</table>

1: Number and spec of circulating fans depends upon chamber size and drying application

2: Amperage draw depends upon quantity and spec of both preheaters and circulation fans, contact Nyle for an estimate based on your application
The world’s first dehumidification dry system that can operate at up to **240°F**

VHT Benefits:

- Designed for loads of 50MBF to 1MMBF.
- Operates at up to 240°F (115°C), matching the speed of most conventional continuous kilns.
- Achieves top quality results with drying times equivalent, or faster than continuous kilns.
- Our heat pump technology maximizes energy efficiency by using 40% - 60% less energy than conventional kilns with a boiler.
- We use corrosion resistant aluminum cabinets and stainless steel dehumidification coils giving our machines an extra long life.
- Nyle’s precision control systems with remote access from anywhere in the world.
- The famed Nyle customer support.

Which model is right for you?

VHT Dehumidification kilns are made to order. Our expert sales representatives will select a base model and together with you, recommend a system to exactly suit your lumber drying needs.
Nyle has developed PHT Heat Treating Systems that are adaptable, efficient, and easy to operate.

A Nyle PHT System can handle anything from pallets to reclaimed wood. The innovative flexible design of these units make modification and expansion easy when regulations or your needs change.

PHT packages are outfitted with our indirect gas fired furnaces burning either natural gas or propane for high temperature heat treating and or extended drying capabilities. It’s safer, more efficient and doesn’t require a boiler.

Our systems are designed and manufactured in-house from our facility in Brewer, Maine. Every system comes with service and support from the professionals that build them.

Container Chamber Package

Nyle offers 40’ container heat treating chambers. These chambers are fabricated from a 40’ refrigerated shipping containers and contain everything that you need to start heat treating.

All Nyle chambers are manufactured with the highest quality materials to ensure that your time is spent making money, not repairs.

PHT Unit Options

<table>
<thead>
<tr>
<th>Model</th>
<th>Load Capacity</th>
<th>Burner Upgrade for Northern Climates (BTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHT 350</td>
<td>350 Pallets</td>
<td>800,000</td>
</tr>
<tr>
<td>PHT 660</td>
<td>660 Pallets</td>
<td>1,600,000</td>
</tr>
<tr>
<td>PHT 1320</td>
<td>1320 Pallets</td>
<td>3,200,000</td>
</tr>
<tr>
<td>PHT 2640</td>
<td>2640 Pallets</td>
<td>6,400,000</td>
</tr>
</tbody>
</table>
Nyle has developed the FHT Heat Treating Systems that are adaptable, efficient, and easy to operate.

A Nyle FHT System can handle anything from pallets to reclaimed wood. The innovative flexible design of these units make modification and expansion easy when regulations or your needs change.

FHT packages are outfitted with our indirect gas fired furnaces burning either natural gas or propane for high temperature heat treating and or extended drying capabilities. It’s safer, more efficient and doesn’t require a boiler.

Our systems are designed and manufactured in-house from our facility in Brewer, Maine. Every system comes with service and support from the professionals that build them.

Chamber Packages

Container Chamber Package

Nyle offers 40’ container heat treating chambers. These chambers are fabricated from a 40’ refrigerated shipping containers and contain everything that you need to start heat treating.

Prefabricated Chamber Package

Don’t want to build a heat treating Chamber? No problem! Nyle can build a chamber for you based on your needs. Nyle’s prefabricated FHT chambers come in an extra wide design to make loading and unloading a breeze. Loading capacities range between 6 - 60 cords of firewood.

Prefabricated chamber packages arrive on site semi-assembled with a set of detailed plans for easy setup. All you need is a concrete slab to put it on.

All Nyle chambers are manufactured with the highest quality materials to ensure that your time is spent making money, not repairs.

FHT Unit Options

<table>
<thead>
<tr>
<th>Model</th>
<th>Load Capacity</th>
<th>Burner Upgrade for Northern Climates (BTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHT 350</td>
<td>6 Cords</td>
<td>800,000</td>
</tr>
<tr>
<td>FHT 660</td>
<td>15 Cords</td>
<td>1,600,000</td>
</tr>
<tr>
<td>FHT 1320</td>
<td>30 Cords</td>
<td>3,200,000</td>
</tr>
<tr>
<td>FHT 2640</td>
<td>60 Cords</td>
<td>6,400,000</td>
</tr>
</tbody>
</table>
Nyle Systems has been the world leader in lumber drying kilns for more than four decades. We use corrosion resistant aluminum giving our machines an extra long life and maximum energy efficiency. When you buy a kiln from Nyle you are not only getting the kiln, you are also receiving the famed Nyle Customer Support, which is rated to be the best in the business.

Nyle Container Kilns

Nyle Systems offers complete container kiln packages that combine our well-known, high quality L-Series drying systems with a 20 or 40 foot shipping container and everything else needed to make a top-quality drying kiln.

This package includes: dehumidifier, precision controls system, fans, heater and venting.

Nyle’s Unmatched Experience

Through our more than 40 years in business we have gained a ton of experience in drying all types of lumber. Whether you’re looking for a complete turn-key kiln system or for specific components, you have come to the right place. The Nyle team is committed to providing support with any questions, whether it’s mechanical, electrical, or just how to get the best results from the drying process.

Our systems are designed and manufactured in-house from our facility in Brewer, Maine. Every system comes with service and support from the professionals who build them.

<table>
<thead>
<tr>
<th>20 Foot Container Specs</th>
<th>40 Foot Container Specs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example of Lumber Species</td>
<td>Capacity</td>
</tr>
<tr>
<td>Pine</td>
<td>2,295 BF</td>
</tr>
<tr>
<td>Mahogany</td>
<td>1,836 BF</td>
</tr>
<tr>
<td>Oak</td>
<td>1,836 BF</td>
</tr>
</tbody>
</table>
Conventional Kilns

Nyle Conventional Kilns

- Easy to use precision control systems.
- Operates at up to 180°F - 200°F.
- Designed for loads of up to 350,000 BF.
- Top quality results with a short drying time and maximum efficiency.

These units make drying as simple as possible and allow for even inexperienced operators to produce the highest quality lumber and improve yields.

Nyle can supply a turn-key solution or you can pick and choose the equipment to build your own kiln.

- How Water Heated
- Steam Heated
- Indirect Gas Fired
- Fork Lift Loaded
- Track Kilns

A complete system includes the chamber, coils, fans, vents, doors, controls, spray systems, etc. We can provide you with a complete aluminum chamber including all equipment and controls, or we can provide you with the blueprints to build your own chamber and we can provide any equipment you'll need to complete the job.

Quality

Nyle Systems has been the world leader in lumber drying kilns for more than four decades. We use corrosion resistant aluminum giving our machines an extra long life and maximum energy efficiency. With our mobile precision controls you can control your kiln from anywhere in the world with the use of a laptop or smartphone. When you buy a kiln from Nyle you are not only getting the kiln, you are also receiving the famed Nyle Customer Support, which is rated to be the best in the business.

Nyle’s Unmatched Experience

Through our more than 40 years in business we have gained a ton of experience in drying all types of lumber. Whether you’re looking for a complete turn-key kiln system or for specific components, you have come to the right place. The Nyle team is committed to providing support with any questions, whether it’s mechanical, electrical, or just how to get the best results from the drying process.

Our systems are designed and manufactured in-house from our facility in Brewer, Maine. Every system comes with service and support from the professionals that build them.
Indirect Fired Heaters

Nyle Systems uses indirect fired heaters whenever possible. Compared to direct fired heaters, they are more safe, clean and require less maintenance.

Indirect fired heaters can be ordered for natural gas or propane.

In an indirect fired burner the by-products of combustion remain inside the heat exchanger, resulting in cleaner process air.

There is also no make-up air requirement, resulting in less outside air entering the chamber, further reducing heating costs.

Indirect Vs. Direct

Nyle’s Unmatched Experience

Our systems are designed and manufactured in-house from our facility in Brewer, Maine.

Every system comes with service and support from the professionals who build them.

Safety

Indirect fired heaters have a much better safety rating than direct gas fired heaters and allow for better quality control. With direct gas fired heaters, outside air is constantly being introduced into the chamber, which makes it difficult to properly control the drying process.

They are a lower cost purchase initially because they don’t require heating coils that indirect gas fired heaters do but it does heavily rely on a screen which acts as a filter to catch any flying debris from passing through the fire and igniting the chamber. These screens can corrode over time which is why more and more companies are having issues with this method and it may also affect your insurance coverage.

Investment

Although indirect fired burners are slightly more expensive for the initial investment, in the long run, they will save you money and benefit you in more ways than one.

With more then 10 years of success with indirect fired heaters, Nyle Systems is committed to their use.
Indirect Fired Heaters

These stand alone heaters can be used for additional heat for an existing kiln or as a primary source of heat for a new kiln. These heaters use Nyle Systems indirect fired heaters for safety, reliability and efficiency.

Stand alone heaters can be outfitted for propane or natural gas.

<table>
<thead>
<tr>
<th>Model</th>
<th>Standard Indirect Burner</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHV 4</td>
<td>400,000</td>
</tr>
<tr>
<td>GHV 8</td>
<td>800,000</td>
</tr>
<tr>
<td>GHV 16</td>
<td>1,600,000</td>
</tr>
</tbody>
</table>
During a kiln drying cycle, vents and dehumidification systems are used to remove moisture from a kiln chamber, therefore allowing the moisture from wood to also be removed. A certain relative humidity or wet bulb depression is always trying to be accomplished in order to dry each load of wood properly. If moisture in a chamber is removed too quickly, it can deteriorate a load of wood being dried.

In order to minimize this, Nyle Systems has created an Atomizing Spray System, which adds humidity into the air inside of a kiln chamber.

Another reason for Nyle's Atomizing Spray System is for wood conditioning. During wood conditioning, moisture is added to the surface of the wood. This is done at the end of a drying process to help reduce any stresses in the wood from the drying process.

Increases wet bulb while maintaining temperature | Reduces the demand on a boiler

Reduces or removes the need for boiler chemicals, meaning no make up water for conventional kilns

When It’s Time to Condition Your Lumber

Water is pushed through small spray nozzles which creates a very fine mist inside of the kiln chamber. This mist raises the relative humidity inside of the kiln chamber quickly. A benefit of this method compared to other methods, like steam spray, is that the mist does not increase chamber temperature, which means you’ll have more control of the kiln temperature during the process. You’ll also have more boiler capacity since our system reduces or eliminates the need for conditioning chemicals.

This process is completely automated on a Nyle Systems Kiln. Your preferred method of kiln drying along with your settings will determine when the spray system will turn on and off.